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Abstract
We present a recursive prescription to calculate the exact Green function for
general quantum graphs. For the closed case, the expression for the poles of
G—which gives the individual eigenstates—has the structure of a semiclassical
formula, where the sum over the periodic orbit is already performed.
As applications we discuss eigenstate localization for a three-arm closed
star and filter-like mechanisms for transmission throughout an open trident
graph.

PACS number: 03.65.Nk

A graph is a network of M connected vertices V, figure 1. Each Vm is attached to Nm arms of
length �mn (n = 1, . . . , Nm). If both ends (just one end) of an arm are fixed to vertices it is
called a bond (semi-infinite lead). There are no leads in closed graphs. Along any arm, ψ(x)

is defined uniquely from a 1D Schrödinger equation. The total wavefunction is given by such
piecewise solutions properly matched at the vertices [1].

For a long time quantum graphs have been used in the description of real systems
[2]. Indeed, electron transport in organic molecules [3], such as proteins and polymers,
may follow one-dimensional pathways (the bonds) changing from one path to other due to
scattering centres (the vertices). Under certain conditions [4], charge transport in solids is
also well described by one-dimensional dynamics, as in polymer films [5]. Moreover, such
dynamics can be branched, examples being [6]: disordered superconductors, superlattices,
quantum wires and mesoscopic networks. From a more fundamental point of view, quantum
graphs have also become important tools for studying different aspects in quantum mechanics.
For instance, band spectrum properties of lattices [7], the relation between periodic-orbit
theory and Anderson localization [8] and chaotic and diffusive behaviour in scattering [9, 10].
Surprisingly, they even have provided exact solvable models in quantum chaos [11].

The countless possibilities in the construction of quantum graphs make difficult the use
of a single framework to solve them. In fact, a general prescription should be applied to:
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Figure 1. Examples of open (a) and closed (b) quantum graphs. (c) A single vertex V connected
to N arms. (d ) A planar representation of the quantum graph in (b) (the bond lengths are not shown
to scale). Pmn represents the whole class of possible paths which leave the vertex m along the
bond n.

(i) both closed and open cases, given the spectrum eigenstates for the former and the scattering
states for the latter; (ii) any kind of structure and connectivity of the bonds and (iii) any
type of boundary condition (BC) on the vertices, allowing the case of different BCs in each
Vm. Furthermore, the method should: (iv) be implemented through some sort of hierarchy or
recursive procedure, in order to handle networks with large numbers of bonds and vertices; and
(v) work for dressed graphs, i.e., when there is a potential Umn(x) along each bond. Here we
report a way to obtain the exact Green function for a general quantum graph. One difficulty
in doing so is to make the appropriate matches of the different BCs at each vertex across
the whole network. This problem is overcome by applying a recursive construction recently
used to derive G for a 1D lattice of very general point-like scatterers [12]. Our approach can
be regarded as a factorization method, used in different contexts in the literature (see, e.g.,
[13, 14]). We mention that the Green function for quantum graphs has been considered in a
recent nice work [10]. However, there the most general case of energy-dependent scattering
matrices for each vertex is not discussed and a schematic way is not presented to regroup the
multi-scattering contributions to G, which is very important if one wishes to analyse larger
graphs. This contribution also fulfils this gap. For simplicity we consider the case of free
propagation along the bonds. At the end we comment briefly on how to extend our results to
some classes of dressed graphs. As examples we discuss exact semiclassical-like formulae
for individual energy levels, eigenstate localization and BC-dependent scattering properties.

The most general BC at a vertex of a quantum graph (consistent with flux conservation
[7]) can be determined through self-adjoint extension techniques [15]. Indeed, at Vm we define
[13]: �m = (ψm1, ψm2, . . . , ψmNm

)T and � ′
m = (

ψ ′
m1, ψ

′
m2, . . . , ψ

′
mNm

)T
. The BC is specified

by Nm × Nm matrices Am and Bm, where Am�m = Bm� ′
m. We ensure self-adjointeness of

the Hamiltonian operator by imposing current conservation �
†
m� ′

m = � ′
m
†
�m. As shown in

[13], the general solution for this problem leads to AmB
†
m = B

†
mAm, resulting in a set of N2

m

independent real parameters to characterize the BC at Vm.
Consider now a graph with a single vertex V attached to N arms, figure 1(c). The

scattering solution for a plane wave of energy E = k2 incoming from the arm j is given
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by ψn(x; k) = δnj exp[−ikx] + Snj (k) exp[i kx], for n = 1, . . . , N . Here, Snn = Rn can be
interpreted as the reflection coefficient in arm n and Snj = Tnj as the transmission coefficient
from arm j to arm n. Norm preservation implies SS† = S†S = 1. Also, from the symmetries
of the Schrödinger equation for real potentials we have [16] S†(k) = S(−k). These properties
lead to

Rn(k) = R∗
n(−k) RnT

∗
jn + R∗

j Tnj +
∑

i �=n,j

TniT
∗
ji = 0

Tnj (k) = T ∗
jn(−k) RnR

∗
n +

∑

j �=n

TnjT
∗
nj = 1

(1)

which are a natural generalization of the usual relations for the scattering coefficients of a point
scatterer on the line [12, 16]. If one also requires time-reversal invariance then Tnj = Tjn.
As shown in [13, 17], S is given uniquely from the matrices A and B. Thus, the quantum
amplitudes R and T (which satisfy (1)) can be obtained from the N2 real parameters of the
BC. In other words, a vertex with the most general boundary conditions consistent with the
flux conservation is completely characterized by its scattering amplitudes.

From the results in [12, 18] we can readily write down the exact Green function for the
graph in figure 1(c) as (h̄ = 2µ = 1, xf in the arm n and xi in the arm l)

Gnl = 1

2ik
{δnl exp[ik|xf − xi |] + Snl(k) exp[ik(xf + xi)]}. (2)

For a general open or closed quantum graph with M vertices we can obtain its Green function
by using a multiple scattering approach introduced in [18] and further developed in [12, 19]
(for a parallel with oriented classical signal flow graphs, see [20]). The exact G is given
by G(xf , xi; k) = (2ik)−1 ∑

s.p. Ws.p. exp[iSs.p.(xf , xi; k)]. The sum is performed over all
possible scattering paths (s.p.) starting at xi and ending at xf . For each s.p., the classical
action is obtained from the free propagation along the successive arms composing the path, or
Ss.p. = kLs.p., with Ls.p. being the s.p. total length. The amplitude (or weight) Ws.p. is given by
the product of the quantum coefficients gained each time the particle is scattered off a given
vertex along the way. For instance, suppose a s.p. which gets to Vm from the arm n, then if
it follows an arm j,W gains a factor T

(m)
jn , on the other hand, if it turns back to the arm n,

W gains a factor R(m)
n . To obtain the Green function we have to classify and to sum up over

all the scattering trajectories. The idea is to regroup infinite sets of trajectories into classes
[21]. As shown [18], this simplifies the calculations enormously, and so one can obtain G in
a closed expression independently of the form of the individual reflection and transmission
coefficients at the vertices.

As an example, consider the tetrahedron [22] in figure 1(b). Once leaving a vertex m
along the arm n, there are infinite possibilities of different paths for the particle due to multiple
scattering. We denote by Pmn all the contributions of this class to G, figure 1(d). Thus, G
can be written as a sum over a finite number of classes, instead over infinite individual s.p.
[12, 18, 19, 21]. The P are not independent and are obtained from a system of algebraic
equations relating each other, e.g., P11 = exp[ik�11]

{
R

(4)
1 P41 + T

(4)
31 P43 + T

(4)
21 P42

}
. The

system is easily determined and solved. For the end points in the same bond as shown in
figure 1(d) and assuming x = 0 at V1 and x = � at V2, we have [g = g1g2 −R1R2 exp[2ik�],
gj = 1 − Tj exp[ik�])]

G = 1

2ikg
{(1 − T1 exp[ik�]) exp[ik(xf − xi)] + R1 exp[ik(xf + xi)]

+ (T2 + (R1R2 − T1T2) exp[ik�]) exp[ik(� − xf + xi)]

+R2 exp[ik(2� − xf − xi)]}. (3)
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Figure 2. 3-star graph, with �1 = 1.4, �2 = 1.1, �3 = 1. Here (see text) d = 1, c = 1/b =
150, a = 2. The first 14 states and then some others up to n = 40 strongly localize in one of the
arms. Three typical examples are shown.

The above coefficients have a simple interpretation [12]: T1(2) [R1(2)] is the total probability
amplitude for the particle to get into the vertex V1(2), to suffer multiple scattering, and
then to come out from the vertex V2(1) [V1(2)]. The expressions for R and T depend
on the individual scattering amplitudes at the Vm and are very lengthy in the general
case. For example, consider all Vm with the same BC, the so-called δ interaction [7]:
ψmj (Vm) = ψmn(Vm) = ψm(Vm) (for any n, j ) and

∑
j ψ ′

mj (Vm) = γψm(Vm). Then,
the individual reflection (transmission) amplitudes of the vertices are all equal, given by
R = (γ − (N − 2) ik)/(N ik − γ ) (T = 2ik/(N ik − γ )), where N = 3. If also all
bonds are of the same length �, we have T1 = T2 = T and R1 = R2 = R, with
T = T 2 exp [2ik�]{(R + T )(1 − R exp [ik�]) + 2T 2 exp [ik�]}/f,R = −{R − R2 exp [ik�] +
(T 3 − 2R2T − R3) exp [2ik�] + (R4 + 2R3T − 2R2T 2 − 3RT 3 + 2T 4) exp [3ik�]}/f and
f = 2ik[1 − R exp [ik�] − (R + T )2 exp [2ik�] − (2T 3 + RT 2 − 2R2T − R3) exp [3ik�]].

The eigenvalues are the poles of G, given from g = 0. At first sight it is not clear that
g has the structure of a periodic-orbit sum. However, by using (1 − z)−1 = 1 + z + z2 + · · ·
for all terms of 1/g = (g1g2)

−1{1 − R1R2 exp[2ik�]/(g1g2)}−1, one sees that g−1 is written
as the sum of all possible periodic orbits on the tetrahedron. This result is true for any kind
of quantum graph discussed here. So, in general the individual eigenvalues and the density of
states ρ(E) = −(1/π) Im[

∫
dxG(x, x; k)] are given exactly by such expansions, extending

the already known cases in the literature [8, 10, 11, 22]. However, in our case the sum is
always already performed.

The regrouping procedure is quite useful for more complicated topologies. For instance,
for the graph in figure 1(a) we can prescribe to a block of vertices (indicated by dashed
boxes) classes of paths representing all the possible s.p. going into and coming out of that
block through specific arms. Within each block further divisions can be made, and so on.
This substitutes the problem of solving a large graph by one of solving a few smaller. In
particular, the calculation is drastically simplified if the blocks have some kind of regularity
as for periodic graphs.

One advantage of our approach is that we can derive a formula for the eigenstates of
a quantum graph in a very general way. For a given BC, we need just to substitute the
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Figure 3. The scattering probabilities for the trident open quantum graph. For the peaked |T |2
we have Dirichlet BC for Vi , γa = 50, γb = γd = 100, γc = 20, �ab = √

2, �ad = √
3, �ai =√

5, �bc = 0.95
√

5 and �cd = √
5. For the oscillating |T |2 we have Neumann BC for Vi , all γ

equal to 10, �ab = 1, �ad = 5/6, �ai = 1, �bc = 1/2 and �cd = 2/3. |Raa |2 is plotted for the first
set of parameters for large values of k.

appropriate individual R and T into the final expression. Consider, for instance, the star graph
[23] in figure 2. For arbitrary BC we can quite easily obtain an equation given its eigenvalues.
Here we find that state localization can take place in this example if appropriate BCs are
chosen. Indeed, in our 3-star graph we assume for the central vertex the following BC [15]:
ψ1 = ψ2, ψ3 = aψ1 + b(ψ ′

1 + ψ ′
2), ψ

′
3 = cψ1 + d(ψ ′

1 + ψ ′
2), with ad − bc = 1. For the ending

vertices we consider Dirichlet BC. The eigenstates are calculated from the residues of G at the
poles (which in this simple case can also be obtained from the Schrödinger equation, given the
same result as it should be). In figure 2 we plot |ψn|2 for three different states. The probability
for the particle to stay at arm 2 is about 95% for n = 2, for n = 4 it is 99% in arm 1 and for
n = 10 it is 99% in arm 3.

For open graphs we can identify from G the total scattering amplitudes. Suppose the
trident graph of figure 3. The final expression for G(xf , xi), with both end points located at
any two leads, is very similar to (2). Indeed, if xi is in the lead a and xf in b (with the origin of
the leads assumed to be at the corresponding vertices), then G = Tba exp[ik(xi + xf )]/(2ik).
Thus, |Tba(k)|2, which depends on the transmission and reflection amplitudes of each vertex as
well as on the lengths of all inner bonds, is the total probability for a particle of wave number
k incident from the lead a to be transmitted to the lead b. As an explicit example we consider
that for all the vertices connected to the leads, the BCs are of the already discussed δ type. For
the only inner vertex Vi , we assume either Neumann or Dirichlet BC. In figure 3 we show the
results for two sets of parameters. The strong influence of the BCs on the dynamics becomes
evident. In the first set we have very narrow peaks (for k not too large) in the transmission, thus
the quantum graphs act like a filter for the incident wave. The particle can pass throughout
the graph only for very specific values of k. Such values also determine in which lead the
particle will come out, as a kind of channel selecting device. On the other hand, for the second
set the transmission probabilities oscillate, showing a broader distribution among the different
leads. We also show the reflection probability for the first set of parameters for large
values of k. Differently from the reflection probability for the usual potential barriers in 1D,
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which goes to zero for high energies, reflection can be close to 1 even for very high incident
momentum k. This is just a consequence of interference effects due to the inner structure of the
graph.

In summary, we have discussed a constructive approach to obtain the exact Green function
for general quantum graphs. It is a useful tool for studying the rich dynamics which take place
in those systems, as illustrated by some examples. For the dressed case, i.e., when there are
potentials Ujn(x) along the arms, we observe that if such potentials decay at least exponentially,
one can obtain very good analytical approximations for G by using the same method [19]. The
difference is that now, in the construction of the Ws.p., one needs to include the transmission
and reflection coefficients of the U. The potentials must also be taken into account in the
calculations of the Ss.p. (see [19] for details). Finally, one can easily incorporate the case of
a magnetic field on each arm, represented by a vector potential Ajn, by adding to the action
terms linear on the Ajn (see [9, 22]).

Acknowledgments

AGMS and MGEdL gratefully acknowledge CNPq for financial support.

References

[1] Kottos T and Smilansky U 1999 Ann. Phys., NY 274 76
[2] Pauling L 1936 J. Chem. Phys. 4 673

Ruendenberg K and Scherr C 1953 J. Chem. Phys. 21 1565
Coulson C A 1954 Proc. Phys. Soc. 67 608
Montroll E W 1970 J. Math. Phys. 11 635

[3] Beratran D N, Betts J N and Onuchic J N 1991 Science 252 1285
Kobrak M N and Bittner E R 2000 Phys. Rev. B 62 11473

[4] Kao K C and Hwang W 1981 Electrical Transport in Solids (Oxford: Pergamon)
[5] Freire J A, da Luz M G E, Ma D and Hümmelgen I A 2000 Appl. Phys. Lett. 77 693
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